Forskere efterlyser bæredygtig og ansvarlig AI-udvikling

Udviklingen af AI-modeller er en overset klimasynder. Forskere fra Københavns Universitet har lavet en opskriftsbog over AI-modeller, der kan yde det samme, men bruger meget mindre energi. Energiforbruget og klimaaftrykket bør være et fast parameter, når man designer og træner AI-modeller, mener forskerne.

Et studie anslår, at AI-servere i 2027 vil have et lige så stort elforbrug som Argentina eller Sverige. Foto: 123rf.com

08.04.2024

SCM.dk

At det koster kolossale mængder energi, når vi googler, taler med Siri, spørger ChatGPT om noget eller på andre måder bruger AI, er efterhånden blevet almen viden. Et studie anslår, at AI-servere i 2027 vil have et lige så stort elforbrug som Argentina eller Sverige. Og en enkelt forespørgsel til ChatGPT er anslået til i gennemsnit at sluge lige så meget energi som 40 opladninger af en mobiltelefon. Men på forskningsfeltet og i branchen har man stadig ikke fokus på at udvikle AI-modeller, som er energieffektive og derfor har et mindre CO2e-aftryk. Det påpeger forskere fra Københavns Universitet.

“Udviklerne har i dag et snævert fokus på at bygge AI-modeller, der er effektive i form af, hvor præcist et resultat, de kan opnå. Det svarer til at sige, at en bil er effektiv, fordi den får dig hurtigt frem, men ignorerer den mængde brændstof, den bruger. Og det har resulteret i AI-modeller, som ofte er ineffektive i form af energiforbrug”, siger adjunkt Raghavendra Selvan fra Datalogisk Institut, som forsker i mulighederne for at sænke CO2e-aftrykket fra AI.

Men det nye studie, som han og datalog-studerende Pedram Bakhtiarifard er to af forfatterne bag, viser, at man sagtens kan spare masser af CO2 uden at gå på kompromis med AI-modellens præcision. Det kræver, at man har klimaomkostninger for øje allerede i AI-modellernes design- og træningsfase.

”Hvis man fra start sammensætter en model, der er energieffektiv, mindsker du både CO2e-aftrykket i alle faser af modellens ’livscyklus’. Det gælder både i træningen af den, som er en særlig energitung proces, der ofte tager uger eller måneder, og i anvendelsen af den”, siger Raghavendra Selvan.

I studiet har forskerne beregnet, hvor meget energi, det kræver at træne over 400.000 AI-modeller af typen convolutional neural networks – dog uden faktisk at træne alle modellerne. Convolutional neural networks bruges blandt andet til at analysere medicinske billeder med, til sprogoversættelse og til genkendelse af objekter og ansigter – en funktion, du måske genkender fra kamera-app’en på din egen smartphone.

På baggrund af beregningerne præsenterer forskerne en samling af AI-modeller, som bruger mindre energi på at løse en given opgave, men som yder cirka det samme. Studiet viser, at man enten ved at vælge andre slags modeller eller justere på modellerne kan spare 70-80 procent energi i trænings- og implementeringsfasen og kun gå 1 procent eller mindre ned i ydeevne. Og det er ifølge forskerne et konservativt estimat.

”Man kan se vores resultater som en opskriftsbog, som AI-fagkyndige kan slå op i. Opskriftsbogen fortæller ikke bare, hvor godt de forskellige algoritmer yder, men også hvor energieffektive de er. Og at man ved at skifte en ingrediens ud med en anden i opbygningen af modellen, ofte kan opnå samme resultat. Så nu kan fagfolk vælge den model, de ønsker ud fra både ydeevne og energiforbrug og uden at skulle træne hver enkelt model først”, siger Pedram Bakhtiarifard og fortsætter:

”Ofte træner man nemlig mange modeller, før man finder den, man synes er mest egnet til at løse en bestemt opgave. Det gør udviklingen af AI ekstra energitung. Derfor ville det være mere klimavenligt, hvis man vælger den rigtige model i første hug og samtidig vælger en model, der ikke sluger alt for meget strøm i træningsfasen”.

Læs også: Pallerobot revolutionerer pallehåndtering med kunstig intelligens

Forskerne understreger, at på specifikke felter som selvkørende biler eller visse medicinske områder kan modellens præcision dog være afgørende for sikkerheden, og her er det vigtigt ikke at gå på kompromis med ydeevnen. Men dette bør ikke afholde fra at gå efter høj energieffektivitet i andre domæner.

“AI har et fantastisk potentiale. Men skal vi sikre en bæredygtig og ansvarlig AI-udvikling, bør vi have en mere holistisk tilgang, der ikke kun har ydeevne for øje, men også klimapåvirkning. Og det kan vi sagtens finde en bedre balance i, viser vi her. Når vi udvikler AI-modeller til forskellige opgaver, bør det derfor være et grundkriterium også at kigge på, hvor energieffektive de er – ligesom det er standard at gøre i mange andre brancher”, slutter Raghavendra Selvan.

Opskriftsbogen, som forskerne har sat sammen i dette studie, er et open-source-datasæt, som andre forskere kan bruge. Informationen om alle de 423.000 AI-modeller er offentliggjort på Github og kan tilgåes ved hjælp af simple Python scripts.

Kilde: Københavns Universitet, Det Natur- og Biovidenskabelige Fakultet

/ PiB

Teknologisk Institut Innovation og Digital Transformation

Sponseret

Sådan bliver din SMV resilient i 2025

DACHSER Intelligent Logistics

Sponseret

Fremtidens terminal har 470 scannere

Relateret indhold

22.11.2024SCM.dk

Nordiske virksomheder har 23 milliarder euro bundet i overflødige lagre

21.11.2024SCM.dk

På vej mod mest profitable år siden covid-krisen

20.11.2024AGR

Sponseret

Er dit ERP nok til lagerstyring? Sådan lukker AGR hullerne i forsyningskæden

20.11.2024Columbus

Sponseret

IAMs vigtige rolle i Nuudays digitale transformation

19.11.2024SCM.dk

EU vil styrke cybersikkerheden med nye sikkerhedskrav

19.11.2024SCM.dk

Fremtiden vil byde på store investeringer i cybersikkerhed med AI som livredder

19.11.2024Columbus

Sponseret

ATP om indkøb af IAM-løsninger: ”Skab dialog med leverandører og undgå impulskøb”

19.11.2024SCM.dk

Indspark: I praksis er AI langt fra de sci-fi-scenarier, der dominerer mediebilledet

Jobmarked

Se alle

Hold dig opdateret med SCM.dk

Tilmeld dig nyhedsbrevet og følg med i alt som rører sig indenfor ledelse af forsyningskæden, Nyhedsbrevet kommer kun to gange pr. uge.

Se flere temaer

Events

Se alle
DTU Learn for Life
Efteruddannelse
Supply Chain Management (SCM)

Få kompetencer til at designe og lede effektive produktions- og forsyningskæder, også kaldet supply chains, som er en forudsætning for virksomhedens konkurrenceevne.

Dato

31.10.2024

Tid

09:00

Sted

Lautrupvang 15. 2750 Ballerup

Bureau Veritas
Kursus
CSRD-rapportering

EU’s Corporate Sustainability Reporting Directive (CSRD) er en game changer for bæredygtighedsrapportering, da det blandt andet fastsætter ensartede metoder og måleenheder for virksomheders rapportering af miljømæssige, sociale og ledelsesmæssige aspekter (ESG).

Dato

07.11.2024

Sted

Oldenborggade 25-31, 7000 Fredericia

Teknologisk Institut Innovation og Digital Transformation
Konference
Sådan bliver din SMV resilient i 2025

Deltag i denne konference og få indsigt i de udfordringer og muligheder, der bliver vilkårene for danske SMV’er som din i 2025.

Dato

28.11.2024

Tid

09:00

Sted

Aarhus

Bureau Veritas
Webinar
Webinar: Miljømærkninger

I dag findes der et væld af miljømærker, men hvad er deres egentlige værdi, og hvordan vælger man det rette miljømærke for sin virksomhed? Dette webinar vil tage udgangspunkt i ESG-principperne (Environmental, Social, Governance) og undersøge, hvordan miljømærker kan bidrage til at dokumentere jeres indsats på disse tre områder.

Dato

28.11.2024

Tid

10:00

Sted

Online

Bureau Veritas
Webinar
Webinar: ISO 27001 & ISO 27701 certificering

Lær om fordelene ved en ISO 27001 certificering

Dato

29.11.2024

Tid

10:30

Sted

Online

Bureau Veritas
Webinar
Webinar: Learn about AQAP2110 Standards and their requirements

Did you know that suppliers of products and services to the NATO Member Countries Defence Acquisition and Logistics Organizations often must meet relevant NATO quality standards outlined in the AQAP - Allied Quality Assurance Publications?

Dato

11.12.2024

Tid

13:00

Sted

Online