Selv de bedste algoritmer har svagheder

ChatGPT og andre løsninger baseret på kunstig intelligens buldrer afsted. Men selv de mest succesfulde algoritmer har begrænsninger. Forskere på Københavns Universitet har som de første i verden påvist matematisk, at bortset fra simple problemer er det ikke muligt at lave algoritmer, som altid er stabile. Studiet kan føre til retningslinjer for, hvordan man skal teste algoritmer bedre og minder os om, at maskiner trods alt ikke har menneskelig intelligens.

Forskerne har skabet et sprog, som kan bruges til at tale om svaghederne i algoritmer til kunstig intelligens. Det kan måske føre til udvikling af nogle retningslinjer for, hvordan man skal teste sine algoritmer bedre.. Foto: 123rf.com

15.01.2024

SCM.dk

Maskiner fortolker skanningsbilleder bedre end lægerne, hjælper os med at forstå fremmede sprog, og snart kan de formentlig styre biler mere sikkert end vi selv. Men selv de bedste algoritmer har svagheder. En forskningsgruppe på Datalogisk Institut, Københavns Universitet, afdækker dem.

Tænk på en selvkørende bil, der aflæser et vejskilt. Hvis nogen har sat et klistermærke på skiltet, vil det ikke forhindre et menneske i at forstå skiltet. Men en maskine kan let blive hylet ud af den, fordi skiltet nu er anderledes end de, som den er blevet trænet til at afkode.

”Vi vil gerne have, at algoritmerne er stabile. Det vil sige, at selvom input ændrer sig en lille smule, skal resultatet gerne være næsten det samme. I virkelighedens verden forekommer der alle mulige former for støj, som mennesker er vante til at lukke ude, men som kan forvirre maskinerne”, siger professor Amir Yehudayoff, der leder forskningsgruppen.

Som de første i verden har gruppen sammen med udenlandske forskere påvist matematisk, at bortset fra simple problemer er det ikke muligt at lave algoritmer, som altid er stabile, til brug for Machine Learning. Den videnskabelige artikel med beviset blev optaget på Foundations of Computer Science (FOCS), en af verdens førende konferencer for teoretisk datalogi.

”Jeg vil gerne understrege, at vi ikke har arbejdet direkte med selvkørende biler, men dette virker umiddelbart som en problemstilling, der er for kompleks til, at algoritmerne altid kan være stabile”, siger Amir Yehudayoff, og tilføjer, at den konstatering ikke nødvendigvis har store konsekvenser for udviklingen af selvkørende biler:

”Hvis algoritmen kun fejler under nogle få, meget specielle forhold, vil det måske være til at leve med. Det er straks værre, hvis der er en stor samling af forhold, hvor der sker fejl”.

Desværre kan den videnskabelige artikel ikke bruges af industrien til at finde fejl i algoritmerne. Det har dog heller ikke været meningen, forklarer professoren:

”Vi skaber et sprog, som kan bruges til at tale om svaghederne i algoritmer til Machine Learning. Det kan måske føre til udvikling af nogle retningslinjer for, hvordan man skal teste sine algoritmer. Og på langt sigt kan det måske også betyde, at der vil blive udviklet bedre og mere stabile algoritmer”.

En mulig anvendelse kan være til test af algoritmer, der skal beskytte retten til privatliv.

”En virksomhed hævder måske, at den har udviklet en fuldstændig sikker måde at beskytte brugernes digitale privatliv. For det første kan vores metodik muligvis påvise, at metoden ikke er fuldstændig sikker, og for det andet kan den finde svagheder”, siger Amir Yehudayoff.

Artiklens bidrag er dog først og fremmest teoretisk, og det er især det matematiske indhold, som er nyskabende, tilføjer han:

”Intuitivt kan vi godt forstå, at en stabil algoritme er en, der stadig virker nogenlunde som før, når der bliver tilsat lidt støj. Ligesom med vejskiltet, der har fået sat et klistermærke på. Men som teoretiske dataloger har vi brug for en klar definition, så vi kan beskrive problemet i matematisk sprog. Præcis hvor meget støj skal algoritmen kunne modstå, og hvor tæt skal algoritmen være på at levere det samme resultat som uden støj, for at vi betragter den som stabil? Det er det, som vi har givet et bud på”.

Læs også: It-sikkerhed i forsyningskæden kræver ny adfærd

Den videnskabelige artikel har skabt stor interesse blandt fagfællerne inden for teoretisk datalogi, men ikke fra tech-industrien. Ikke endnu da.

”Der er altid en vis forsinkelse fra ny teoretisk erkendelse til interesse i forbindelse med bestemte anvendelser”, siger Amir Yehudayoff og tilføjer med et smil:

”Og nogle teoretiske erkendelser ender simpelthen med at gå i glemmebogen”.

Det gælder dog ikke i dette tilfælde forudser han:

”Machine Learning vinder stadig mere frem, og det er vigtigt at huske, selv de løsninger, der har stor succes i den virkelige verden, stadig har deres begrænsninger. Nogle gange virker maskinerne næsten som om, at de er i stand til at tænke, men de har trods alt ikke menneskelig intelligens. Det er vigtigt at være bevidst om”.

/ PiB

Teknologisk Institut Innovation og Digital Transformation

Sponseret

Sådan bliver din SMV resilient i 2025

DACHSER Intelligent Logistics

Sponseret

Fremtidens terminal har 470 scannere

Relateret indhold

22.11.2024SCM.dk

Industrispecialist opkøber endnu en værktøjs-aktør

22.11.2024SCM.dk

Nordiske virksomheder har 23 milliarder euro bundet i overflødige lagre

20.11.2024AGR

Sponseret

Er dit ERP nok til lagerstyring? Sådan lukker AGR hullerne i forsyningskæden

20.11.2024Columbus

Sponseret

IAMs vigtige rolle i Nuudays digitale transformation

19.11.2024SCM.dk

EU vil styrke cybersikkerheden med nye sikkerhedskrav

19.11.2024SCM.dk

Fremtiden vil byde på store investeringer i cybersikkerhed med AI som livredder

19.11.2024Columbus

Sponseret

ATP om indkøb af IAM-løsninger: ”Skab dialog med leverandører og undgå impulskøb”

19.11.2024SCM.dk

Indspark: I praksis er AI langt fra de sci-fi-scenarier, der dominerer mediebilledet

Jobmarked

Se alle

Hold dig opdateret med SCM.dk

Tilmeld dig nyhedsbrevet og følg med i alt som rører sig indenfor ledelse af forsyningskæden, Nyhedsbrevet kommer kun to gange pr. uge.

Se flere temaer

Events

Se alle
DTU Learn for Life
Efteruddannelse
Supply Chain Management (SCM)

Få kompetencer til at designe og lede effektive produktions- og forsyningskæder, også kaldet supply chains, som er en forudsætning for virksomhedens konkurrenceevne.

Dato

31.10.2024

Tid

09:00

Sted

Lautrupvang 15. 2750 Ballerup

Bureau Veritas
Kursus
CSRD-rapportering

EU’s Corporate Sustainability Reporting Directive (CSRD) er en game changer for bæredygtighedsrapportering, da det blandt andet fastsætter ensartede metoder og måleenheder for virksomheders rapportering af miljømæssige, sociale og ledelsesmæssige aspekter (ESG).

Dato

07.11.2024

Sted

Oldenborggade 25-31, 7000 Fredericia

Teknologisk Institut Innovation og Digital Transformation
Konference
Sådan bliver din SMV resilient i 2025

Deltag i denne konference og få indsigt i de udfordringer og muligheder, der bliver vilkårene for danske SMV’er som din i 2025.

Dato

28.11.2024

Tid

09:00

Sted

Aarhus

Bureau Veritas
Webinar
Webinar: Miljømærkninger

I dag findes der et væld af miljømærker, men hvad er deres egentlige værdi, og hvordan vælger man det rette miljømærke for sin virksomhed? Dette webinar vil tage udgangspunkt i ESG-principperne (Environmental, Social, Governance) og undersøge, hvordan miljømærker kan bidrage til at dokumentere jeres indsats på disse tre områder.

Dato

28.11.2024

Tid

10:00

Sted

Online

Bureau Veritas
Webinar
Webinar: ISO 27001 & ISO 27701 certificering

Lær om fordelene ved en ISO 27001 certificering

Dato

29.11.2024

Tid

10:30

Sted

Online

Bureau Veritas
Webinar
Webinar: Learn about AQAP2110 Standards and their requirements

Did you know that suppliers of products and services to the NATO Member Countries Defence Acquisition and Logistics Organizations often must meet relevant NATO quality standards outlined in the AQAP - Allied Quality Assurance Publications?

Dato

11.12.2024

Tid

13:00

Sted

Online