Selv de bedste algoritmer har svagheder

ChatGPT og andre løsninger baseret på kunstig intelligens buldrer afsted. Men selv de mest succesfulde algoritmer har begrænsninger. Forskere på Københavns Universitet har som de første i verden påvist matematisk, at bortset fra simple problemer er det ikke muligt at lave algoritmer, som altid er stabile. Studiet kan føre til retningslinjer for, hvordan man skal teste algoritmer bedre og minder os om, at maskiner trods alt ikke har menneskelig intelligens.

Forskerne har skabet et sprog, som kan bruges til at tale om svaghederne i algoritmer til kunstig intelligens. Det kan måske føre til udvikling af nogle retningslinjer for, hvordan man skal teste sine algoritmer bedre.. Foto: 123rf.com

15.01.2024

SCM.dk

Maskiner fortolker skanningsbilleder bedre end lægerne, hjælper os med at forstå fremmede sprog, og snart kan de formentlig styre biler mere sikkert end vi selv. Men selv de bedste algoritmer har svagheder. En forskningsgruppe på Datalogisk Institut, Københavns Universitet, afdækker dem.

Tænk på en selvkørende bil, der aflæser et vejskilt. Hvis nogen har sat et klistermærke på skiltet, vil det ikke forhindre et menneske i at forstå skiltet. Men en maskine kan let blive hylet ud af den, fordi skiltet nu er anderledes end de, som den er blevet trænet til at afkode.

”Vi vil gerne have, at algoritmerne er stabile. Det vil sige, at selvom input ændrer sig en lille smule, skal resultatet gerne være næsten det samme. I virkelighedens verden forekommer der alle mulige former for støj, som mennesker er vante til at lukke ude, men som kan forvirre maskinerne”, siger professor Amir Yehudayoff, der leder forskningsgruppen.

Som de første i verden har gruppen sammen med udenlandske forskere påvist matematisk, at bortset fra simple problemer er det ikke muligt at lave algoritmer, som altid er stabile, til brug for Machine Learning. Den videnskabelige artikel med beviset blev optaget på Foundations of Computer Science (FOCS), en af verdens førende konferencer for teoretisk datalogi.

”Jeg vil gerne understrege, at vi ikke har arbejdet direkte med selvkørende biler, men dette virker umiddelbart som en problemstilling, der er for kompleks til, at algoritmerne altid kan være stabile”, siger Amir Yehudayoff, og tilføjer, at den konstatering ikke nødvendigvis har store konsekvenser for udviklingen af selvkørende biler:

”Hvis algoritmen kun fejler under nogle få, meget specielle forhold, vil det måske være til at leve med. Det er straks værre, hvis der er en stor samling af forhold, hvor der sker fejl”.

Desværre kan den videnskabelige artikel ikke bruges af industrien til at finde fejl i algoritmerne. Det har dog heller ikke været meningen, forklarer professoren:

”Vi skaber et sprog, som kan bruges til at tale om svaghederne i algoritmer til Machine Learning. Det kan måske føre til udvikling af nogle retningslinjer for, hvordan man skal teste sine algoritmer. Og på langt sigt kan det måske også betyde, at der vil blive udviklet bedre og mere stabile algoritmer”.

En mulig anvendelse kan være til test af algoritmer, der skal beskytte retten til privatliv.

”En virksomhed hævder måske, at den har udviklet en fuldstændig sikker måde at beskytte brugernes digitale privatliv. For det første kan vores metodik muligvis påvise, at metoden ikke er fuldstændig sikker, og for det andet kan den finde svagheder”, siger Amir Yehudayoff.

Artiklens bidrag er dog først og fremmest teoretisk, og det er især det matematiske indhold, som er nyskabende, tilføjer han:

”Intuitivt kan vi godt forstå, at en stabil algoritme er en, der stadig virker nogenlunde som før, når der bliver tilsat lidt støj. Ligesom med vejskiltet, der har fået sat et klistermærke på. Men som teoretiske dataloger har vi brug for en klar definition, så vi kan beskrive problemet i matematisk sprog. Præcis hvor meget støj skal algoritmen kunne modstå, og hvor tæt skal algoritmen være på at levere det samme resultat som uden støj, for at vi betragter den som stabil? Det er det, som vi har givet et bud på”.

Læs også: It-sikkerhed i forsyningskæden kræver ny adfærd

Den videnskabelige artikel har skabt stor interesse blandt fagfællerne inden for teoretisk datalogi, men ikke fra tech-industrien. Ikke endnu da.

”Der er altid en vis forsinkelse fra ny teoretisk erkendelse til interesse i forbindelse med bestemte anvendelser”, siger Amir Yehudayoff og tilføjer med et smil:

”Og nogle teoretiske erkendelser ender simpelthen med at gå i glemmebogen”.

Det gælder dog ikke i dette tilfælde forudser han:

”Machine Learning vinder stadig mere frem, og det er vigtigt at huske, selv de løsninger, der har stor succes i den virkelige verden, stadig har deres begrænsninger. Nogle gange virker maskinerne næsten som om, at de er i stand til at tænke, men de har trods alt ikke menneskelig intelligens. Det er vigtigt at være bevidst om”.

/ PiB

Toyota Material Handling A/S

Sponseret

Er det tid til at opgradere jeres truckflåde? Traigo_i sætter helt nye standarder

SCM.dk

Produktionsdanmark får nu eget fagmedie

Relateret indhold

23.01.2026Context& A/S

Sponseret

Fra fragmenterede processer til et sammenhængende ERP-, WMS- og CRM-fundament

23.01.2026SCM.dk

Nordisk-baltisk cybersamarbejde styrker fælles it-forsvar

21.01.2026AGR

Sponseret

AI i lagerstyring: Mere præcision, mindre mavefornemmelse

21.01.2026SCM.dk

Her er Danmarks første AI-baserede overvågning af IoT-forbindelser

19.01.2026Fellowmind Denmark A/S

Sponseret

Fra mavefornemmelser til fakta: sådan arbejder DFDS med data i driften

16.01.2026SCM.dk

Virksomheder arbejder i blinde med skygge-AI

16.01.2026Context& A/S

Sponseret

Trade365 skaber hurtigere processer og et fremtidssikret ERP-fundament

15.01.2026SCM.dk

Epx kan bygge bro til tekniske videregående studier

Hold dig opdateret med SCM.dk

Tilmeld dig nyhedsbrevet og følg med i alt som rører sig indenfor ledelse af forsyningskæden, Nyhedsbrevet kommer kun to gange pr. uge.

Seneste temaer

Se alle

Events

Se alle
DNV Business Assurance Denmark
Kursus
Auditorkursus i kvalitetsledelse

Formålet med kurset er at få et grundigt kendskab til de værktøjer og auditprincipper, der skal anvendes af auditorerne, for at virksomheden får det optimale udbytte af virksomhedens kvalitetsledelsessystem efter DS/EN ISO 9001:2015 og den interne audit.

Dato

26.01.2026

Sted

Odense

Bureau Veritas
Kursus
QMS ISO 9001:2015 Lead Auditor Kvalitet (CQI and IRCA-certificeret)

Bliv certificeret ISO 9001:2015 Lead Auditor i kvalitetsledelsessystemer (CQI-IRCA-certificeret)

Dato

26.01.2026

Sted

Middelfart

DNV Business Assurance Denmark
Kursus
NIS2 Foundation

Lær hvordan direktivets krav implementeres effektivt med afsæt i ledelsesstandarderne ISO 27001 og ISO 22301

Dato

26.01.2026

Sted

København

DTU Learn for Life
Efteruddannelse
Grundlæggende objektorienteret programmering

Vil du opkvalificere dine evner inden for objektorienteret programmering? Så tilmeld dig dette kursus, som også er et diplommodul, og få kompetencer til at designe objektorienterede programløsninger for din virksomhed.

Dato

26.01.2026

Tid

17:00

Sted

Lautrupvang 15. 2750 Ballerup

DNV Business Assurance Denmark
Kursus
APQP4Wind Specialist Training

Event Description

Dato

27.01.2026

Sted

Online

Bureau Veritas
Kursus
IATA Basic Training

IATA Basic Training sætter dig i stand til at håndtere, pakke og mærke farligt gods forsendelser til flytransport samt at udarbejde og kontrollere Dangerous Goods Declaration. Kurset medfører samtidig, at du overholder uddannelseskravet til en Shipper IATA CBTA 7.1 (tidligere category 1) eller Freight Forwarder IATA CBTA 7.3 (tidligere category 3) som krævet i IATA kapitel 1.5.1.2.

Dato

27.01.2026

Sted

Hvidovre